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Abstract

The simplest quantum teleportation algorithms can be represented in geometric
terms in spaces of dimensions 3 (for real state vectors) and 4 (for complex
state vectors). The geometric representation is based on geometric-algebra
coding, a geometric alternative to the tensor-product coding typical of quantum
mechanics. We discuss all the elementary ingredients of the geometric version
of the algorithm: geometric analogs of states and controlled Pauli gates. A fully
geometric presentation is possible if one employs a nonstandard representation
of directed magnitudes, formulated in terms of colors defined via stereographic
projection of a color wheel, and not by means of directed volumes.

PACS numbers: 04.20.Gz, 03.67.−a

(Some figures in this article are in colour only in the electronic version)

1. Multivector geometry in 3D

The fact that vector quantities can be interpreted geometrically in at least two different ways
was already clear to Grassmann [1], some 40 years before Gibbs [2] and Heaviside [3] invented
vector calculus. One of the interpretations, close to what we are now accustomed to [4], treated
vector a as a directed line segment. Grassmann introduced the outer product ∧ that allowed
us to extend two directed line segments into directed plane segments or directed line and plane
segments into directed volume segments (hence, probably the name linear extension theory
he gave to his formalism [1]). The second Grassmann interpretation treated a as a geometric
point; a ∧ b was a directed line segment determined by points a and b, and a ∧ b ∧ c was a
directed plane segment determined by three points [5]. In addition to the outer product a ∧ b,
he introduced the inner product a · b acting, in a sense, in a way opposite to that of a ∧ b.

The two interpretations were not the only ones one could imagine. A variant of
Grassmann’s first interpretation (scalar and vector products) was used by Gibbs and Heaviside
in their reformulation of Maxwell’s electrodynamics. The two products are non-associative

1751-8113/09/135307+08$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/42/13/135307
http://stacks.iop.org/JPhysA/42/135307


J. Phys. A: Math. Theor. 42 (2009) 135307 D Aerts et al

and define objects of different types (scalars a · b and pseudovectors a × b, respectively), and
any student knows that one should not mix them with each other. It is interesting, however,
that Grassmann himself did contemplate a combination λa ·b +μa ∧b, with arbitrary nonzero
constants λ, μ, and termed it the central product. It was Clifford who finally realized that a
central product with λ = μ = 1 defines an operation which is indeed central to the algebra of
vectors [6]. Clifford’s geometric product ab = a · b + a ∧ b is associative and reconstructs the
two products of Grassmann by a · b = 1

2 (ab + ba) and a ∧ b = 1
2 (ab − ba).

The Grassmann–Clifford vector calculus is completely counterintuitive for all those who
learned the Gibbs–Heaviside formalism at school, but there are reasons to believe that it was
Gibbs and Heaviside who spoiled the work. Perhaps the most difficult conceptual element
of the geometric product is that it mixes objects of apparently different species—scalars and
bivectors. But the problem is yet deeper since associativity allows us to discuss products of
arbitrary numbers of vectors, leading to combinations of all the four types of 3D objects—
scalars (directed points), vectors (directed line segments), bivectors (directed plane segments)
and trivectors (directed volumes). Such general combinations are called polyvectors [7, 8] or
multivectors [9].

Any directed line segment can be regarded as containing two types of directed objects of
different dimensionalities: the one-dimensional interior and the zero-dimensional endpoints.
The property is so obvious (‘every stick has two ends’) that it does not, per se, deserve further
comments. However, the subtlety we want to point out is that when it comes to the directed
magnitudes themselves, it is by no means obvious that the interior should be equipped with the
same directed value as the endpoints. The magnitude of the interior of a segment is typically
identified with its length, and if we equip the segment with a kind of arrow we obtain an
interpretation of its directed value. The procedure is no longer so natural if we turn to the
endpoints, and thus in what follows we prefer to think of directed magnitudes in terms of
colors (see below for a precise mathematical definition of what we mean by this statement).

The example of the 1D segment illustrates the first idea we will develop in this paper:
multivectors in 3D will be regarded as colored cubes of a fixed (e.g. unit) size, whose interiors,
walls, edges and corners have colors that can differ from one another. So the basic 3D shapes
(cubic interiors, square walls, segments forming the edges and the points where the edges
meet) play the role of blades (Clifford geometric products of mutually orthonormal basis
vectors) and the colors are the corresponding directed magnitudes. This type of geometric
interpretation has an additional advantage of showing that a multivector is a single object
whose different components are as inseparable from one another as the ends which cannot be
separated from the stick.

The second goal of this paper is to show that multivectors in 3D allow for geometric
implementation of the quantum teleportation protocol [10] entirely at the geometric level and
without any reference to quantum mechanics. The fact that it is formally possible is a trivial
consequence of two facts. First, as recently shown in [11–15], all quantum algorithms can
be represented geometrically if one replaces n-bit entangled states from a 2n-dimensional
complex Hilbert space by multivectors based on a Clifford algebra of some n-, (n + 1)- or
(n+2)-dimensional (Euclidean or pseudo-Euclidean) space. Second, the simplest teleportation
protocol is an example of a 3 bit quantum algorithm involving only real numbers. As such, it
allows for a natural geometric representation in 3D, and thus is especially attractive from the
point of view of geometric representations. Continuing in a similar vein, one can extend the
idea to a 3D lattice whose single cell is described by a single point, three edges, three walls
and one interior—together 8 = 23 basic elements typical of three dimensions—but then one
needs (at least) one more natural number to characterize the cell. The full algorithm involving
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Figure 1. Stereographic projection of the hue color wheel is a one-to-one map between real
numbers and hue of visible colors. If x is a real number, then the hue h(x) of the color is computed
in Mathematica according to h(x) = Hue[ν(x)], where 0 � ν(x) < 1 is defined implicitly by
x(1 − sin 2πν) = cos 2πν.

complex amplitudes can be represented in geometric terms in 4D. All such algorithms are
‘spacetime codes’, a terminology used by Finkelstein [16].

2. Geometric-product coding

Consider an n-dimensional real Euclidean space and denote its orthonormal basis vectors
by bk, 1 � k � n. A normalized blade is defined by bk1...kj

= bk1 . . . bkj
, where

k1 < k2 < · · · < kj . The basis vectors (one-blades) satisfy Clifford’s geometric algebra
(GA)

bk · bl = δkl = 1
2 (bkbl + blbk). (1)

The link between a binary number A1 . . . An and blades (A’s are bits) is given by the formula

cA1...An
= b

A1
1 . . . bAn

n , (2)

where it is understood that b0
k = 1. The blades cA1...An

parametrized by binary sequences are
occasionally referred to as combs. Sometimes one needs complex numbers; their geometric-
algebra analogs can be defined in several ways (cf [13]) but in the context of teleportation one
deals with gates that are real, so for simplicity we skip this point.

Let ψ be a general multivector in 3D:

ψ =
1∑

A,B,C=0

ψABCcABC, (3)

where ψABC are real numbers. Linking ψABC with colors by means of the stereographic
projection of a color wheel3 shown in figure 1, we obtain a geometric representation of ψ

whose special case is shown in figure 2.

3 A circle representation of colors was introduced already by Isaac Newton (Newton’s color wheel) in his Optics
(1706). Other color wheels are associated with the names of Hoener, Munsell and Ostwald; cf [17]. We employ the hue
color wheel, discussed in detail in D Briggs’ The Dimensions of Colour, available at http://www.huevaluechroma.com.
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Figure 2. Example of a general 3 bit multivector ψ = ∑1
ABC=0 ψABCcABC . Values of the

components ψABC can be deduced by means of the color wheel. Here we find approximately
ψ000 = −0.07, ψ100 = 0.32, ψ010 = −3.08, ψ001 = 1.06, ψ110 = −0.85, ψ101 = 0.27, ψ011 =
−0.86, ψ111 = 4.07. Since h(0) = Hue[3/4] the multivector should be, perhaps, shown on a
dark-blue background corresponding to Hue[3/4], making invisible all elements with x = 0 (but
then the blue corner of the cube, ψ000c000, would practically disappear from the figure). The
coloring method is applicable to a cubic lattice and not only to a single cube.

3. Geometric gates and teleportation

The teleportation protocol can be described in various ways, also in purely spacetime 2-spinor
terms [18]. The form which is especially useful here is the formulation in terms of a network of
elementary gates acting on an initial state [19]. In the standard quantum mechanical version,
one begins with the state

|ψ1〉 = α|01〉 + β|11〉, (4)

which is to be teleported, and the entangled state,

|	23〉 = 1√
2
(|0203〉 + |1213〉), (5)

which plays the role of a carrier of quantum information, and is one of the four 2 bit entangled
states forming the so-called Bell basis (figure 3). The Bell basis can be regarded as an analog
of the Minkowski tetrad [20], if one translates qubits into 2-spinors [18] and |	23〉 is then an
analog of the spacelike worldvector xa [18]. The protocol does not need the concrete state
|	23〉, but any non-factorizable 2 bit state can be employed—the 2-spinor protocols analyzed
in [18] employ analogs of ya and εAB .

The goal is to implement the map

|ψ1〉 = α|01〉 + β|11〉 → |ψ3〉 = α|03〉 + β|13〉 (6)

with unknown α, β. The network of gates acts as follows:

H1H2Z3
1X3

2H1X2
1|ψ1〉|	23〉 = |0102〉(α|03〉 + β|13〉), (7)

where Xk,Zk,Hk = (Xk +Zk)/
√

2 are the Pauli X (the NOT gate) and Z, and Hadamard gates
acting on kth bits; Xk

l, Zk
l are the Pauli gates acting on kth bits and controlled by lth bits.

Below we shall give their explicit definition already in a geometric form, so let us first explain
the geometric analog of teleportation. We begin with the multivectors

ψ1 = αc01 + βc11 = α + βb1, (8)

	23 = 1√
2
(c0203 + c1213) = 1√

2
(1 + b2b3). (9)

The teleportation network must therefore act as follows:

H1H2Z3
1X3

2H1X2
1ψ1	23 = c0102(αc03 + βc13),

= α + βb3. (10)

The elementary geometric gates act in direct analogy to their quantum counterparts. Below,
we list the nontrivial actions of the Pauli gates:
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Figure 3. Multivector analogs of the Bell basis of the last 2 bit. The color wheel is used to identify
the colors corresponding to ±1/

√
2 ≈ ±0.71 (Hue[0.554] and Hue[0.946]).

X2
1c100 = c110,

X2
1c101 = c111,

X2
1c110 = c100,

X2
1c111 = c101,

X3
2c010 = c011,

X3
2c011 = c010,

X3
2c110 = c111,

X3
2c111 = c110,

Z3
1c100 = c100,

Z3
1c101 = −c101,
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Figure 4. Controlled X’s. Only the blades containing b1 are affected by X2
1 (b1 is the edge

parallel to the x-axis, b12 = b1b2 is the unit square in the x–y plane and b123 = b1b2b3 is the unit
cube). Similarly, only the blades that contain b2 are affected by X3

2. The gates act trivially on the
remaining blades.

Z3
1c110 = c110,

Z3
1c111 = −c111,

X1c1BC = c0BC,

X1c0BC = c1BC,

X2cA1C = cA0C,

X2cA0C = cA1C,

Z1c1BC = −c1BC,

Z2cA1C = −cA1C.

Translating these formulae into the language of blades, we arrive at the following nontrivial
actions of the controlled gates:

b1
X2

1

↔ b12,

b13
X2

1

↔ b123,

b2
X3

2

↔ b23,
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Figure 5. Z3
1 affects only those blades that contain b1 (then the controlling first bit equals 1) and

b3. The gate changes color of the blade according to h(x) → h(−x).

Figure 6. The effect of the teleportation protocol on a multivector α + βb1.

b12
X3

2

↔ b123,

b13
Z3

1

↔ −b13,

b123
Z3

1

↔ −b123.

The gates Xk create or annihilate the basis vector bk in a blade (i.e. expand or squeeze the
blade along the kth direction) and Zk change the sign of blade if bk is present (i.e. appropriately
change the color of blades containing bk). Figures 4 and 5 show the geometry of the controlled
Pauli gates. The Hadamard gates are a combination of the two actions. Figure 6 shows the
end result of the teleportation protocol.

The cubes in the above examples are colored in a way that allows for merging them
into cubic lattices. Each cube has to be equipped with its own GA. In 1D we would have
pairs of blades {1k, bk}, k = 0,±1,±2, . . . , that are canonically isomorphic to a single GA
with blades {1, b}; in 2D we have {1kl, b1kl, b2kl, b12kl}, k, l = 0,±1,±2, . . . , canonically
isomorphic to {1, b1, b2, b12} and so on. Any quantum GA protocol will influence each of
the cells individually, and thus will play a role of an internal symmetry transformation. No
change of interpretation is needed if one generalizes these geometric structures to curvilinear
lattices (color-preserving deformations of cubic lattices).

A natural geometric arena for geometric analogs of quantum teleportation is provided
by 3D or 4D lattices, whose basic cells can be regarded as multivectors of dimension 23 or
24, respectively. It would be interesting to consider the limiting case of a continuous-space
limit of a multivector lattice and the corresponding field theory (cf the attempts of formulating
field theory on the Clifford space of points, areas and volumes, proposed by Pavšič [7, 8]).
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Although in the present paper we work only with the GA of 3D Euclidean spaces, the transition
to Minkowski space and more general Lorentzian manifolds is immediate [21].

Finally, let us remark that the interpretation of oriented magnitudes in terms of colors
allows for visualizations of yet higher dimensional geometric structures. The point is that
the space of colors is in fact at least three dimensional (the dimensions are known as hue,
chromaticness and brightness) [22]. These dimensions are typically regarded as being compact
but, as we have seen with the example of the hue, they may be regarded as compactified forms
of non-compact ones. So the approach we have outlined above naturally extends beyond 3D
and 4D, and may lead to interdisciplinary applications that go much beyond standard physics.
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